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What are Fault Attacks?
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Fault Models
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Conclusion

m Duration of faults

» Transient

» Permanent

» Destructive

m Controllability (precise, loose, no) [15]
» Fault location

> Fault timing

m Fault precision

> Single bit

> Few bits

> Byte/word
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Fault Types

Let B = {bo, b1, ..., bh—1} be an arbitrary set of bits in memory [15].
Stuck-at faults
> Bits of B get fixed to a value {0,1} and cannot be changed anymore
> b~ bl Vie[0,n—1]
Bit-flip faults
» E.g., all bits of B get flipped
>b,"->bl/-:1—b,' ViE[O,n—l]
= Random faults
» Bits of B are randomly set
» bj ~ bl €{0,1} Vie[0,n—1]
Set/reset faults

» Bits of Baresettolor0
>b,'~“>b,’-=C,' C,'E{O,l} ViE[O,n—l]
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Threats

Adversaries and Threats

m Class |

» Clever outsider

m Class Il

» Knowledgeable insider

m Class Il

» Company/university
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Adversaries Capability Range
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Fault-Injection Methods

m Non-invasive
» Package left untouched
» Modify working conditions
m Semi-invasive
» De-capsulation, e.g., optical inductions
» Allows direct contact to the chip die
m Invasive

» Establish electrical contact to chip
» Modification, destruction, ...
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Non-Invasive Attack Setups - Spikes and Glitches

Controller board

Trigger
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Spike/Glitch Attacks - Examples
m Under-voltage attacks (CHES 2008 [7])

» RFID antenna tearing - cut-off power

supply shortly

m Over-voltage spikes (ECCTD 2009 [8])
» Transistor can switch to higher voltages
(> 5 Volts) for a short period of time
m Clock-glitch attacks
> Mostly timing violations (setup/hold)
m Fault effects

> Allow to change memory content

> Change of program flow: skipping
instructions, program-counter changes,
tampering loop bounds, opcode changes,
modifications of instruction and/or
operand addresses, ...
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Non-Invasive Attack Setups - EM Pulses
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EM Attack - Example

m EM pulses induce Eddy currents that cause transistors to switch
m Fault attack on a CRT-RSA signature generation [18, 2]
» Let n = pq. Instead of calculating S = m mod n, you can split the
computation into S; = m? mod p and S, = m? mod gq.
» Use the Chinese Remainder Theorem (CRT) to combine them such
that S = aS; + bS; mod n = CRT(S;, S2) mod n
» A faulty computation, e.g., in 51, leads to
gcd(S — S, n) = ged(a(S1 — S1),n) = ¢
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High-Temperature Fault Attacks - Example

= CARDIS 2013 [6] or [16]

m 1C placed on top of a heating plate
» No response beyond 160 °C
> Within 70 minutes, we got 100 faults
(between 152 and 158°C)
» Attacking CRT-RSA: 31 revealed one of
the prime modulus: 15 revealed p, 16
revealed g

m Exploiting data-remanence effects [5, 1]

» Extensive heating accelerates aging
(Negative Bias Temperature Instability)

» Experiment: 100°C for 36h at 5.5 V

» SRAM cells got biased to either 1 or 0

» 30 % of memory change after heating

m Data-retention attacks by cooling [20]
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Semi-Invasive Attack Setups
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Semi-Invasive Attack - Example

Program

Program
Code

Code

P Lt

P

m AES on an 8-bit microcontroller (FDTC 2009 [19])

m Modifying 256-bit S-box table stored in flash memory using a low-cost
UV lamp

» UV-light resistant marker protects remaining memory

m Byte fault allows recovering of entire key (using 2500 pairs of correct
and faulty encryptions)
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Invasive Attack Setups (1)
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Invasive Attack Setups (2)
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Exploitation of Faults

Algorithm-specific attacks, e.g., in ECC
» Manipulation of input parameters, e.g., base point [3]
» Operations are done on a twist where ECDLP is easier to solve
> Recover ephemeral key in ECDSA [14]

m Differential Fault Analysis (DFA)

» Exploitation of differential information
» Collection of correct and faulty outputs
» Solve differential fault equations with cryptanalysis techniques

m Instruction-skipping attacks
» E.g., skip square-and-multiply operations of RSA [17]
m Safe-error attacks

» Exploit faults in key-dependent operations
» Faults in computational part: C safe-errors
» Faults in memory: M safe-errors
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Hardware Countermeasures

m Sensors and filters

» Detection of frequency changes
» Power watchdogs, light detectors, temperature sensors, ...

m Hardware redundancy

» Parallel computation, check result at the end
» Double memory, e.g., dual-rail logic

Hiding and masking
» Randomize the computation (dummy random cycles, asynchronous
designs, unstable clocks, ...)
» Obfuscation: bus scrambling, memory encryption, glue logic, ...

Shielding

» Active shielding (wire mesh on chip surface that detects interruptions)
» Passive shielding (metal plate, additional metal layers, ...)

m Switch to newer CMOS process technology
» Smaller transistors are usually harder to attack...
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Software Countermeasures (1)

m General countermeasures [10]

>

vV vy VY VvYyy

m Protocol-level countermeasures

» Fresh re-keying [13]
"all-or-nothing " transforms [11]
» Message modifications [4]

| 4
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Checking input/output parameters (e.g., ECC point-validity checks)
Loop counters (use invariants, calc round signature)

Cyclic redundancy checks (checksum is stored together with data)
Hiding and masking (randomization limits precision)

Time redundancy (calc twice and check, but: permanent faults?)
Inverse computations (decrypt after encryption and check input)
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Software Countermeasures (2)

m Information redundancy

» Add parities

m E.g., with linear codes

B Problems: not compatible with non-linear functions like AES S-box
> Ring embeddings [12]

m |dea: perform operations on both data and check elements

m E.g., embed AES field into a larger ring with data and check algebra
> Infective computations [21]

m |dea: output only random data if there was a fault
m E.g., add secret error and remove it again at the end (or apply bit
scrambling [9])

Michael Hutter June 5, 2014 ﬁTU
Graza



Introduction Threats Setups Attacks Countermeasures Conclusion

Conclusions

m There is NO 100% protection!

> Fault attacks are very powerful
> If you have enough resources, there are almost no limits

m Countermeasures are needed to make attacks harder

» Designer needs to know attack types and techniques
> Attacks are always improving - countermeasures too

m Future work
» Passive and Active Combined Attacks (PACA)
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Thanks for attention!

Questions?

Michael Hutter
michael.hutter@iaik.tugraz.at
Graz University of Technology
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