Fault Attacks and Countermeasures

Michael Hutter

Summer School on Design and Security of Cryptographic Algorithms and Devices for Real-World Applications Ŝibenik, Croatia, 1-6 June, 2014

イロン 不同と 不同と 不同と

Michael Hutter

June 5, 2014

Outline

1 Introduction

- 2 Adversaries and Threats
- 3 Setups and Examples
- 4 Exploitation of Faults
- 5 Countermeasures
- 6 Conclusion

Michael Hutter

June 5, 2014

What are Fault Attacks?

Fault Models

- Duration of faults
 - Transient
 - Permanent
 - Destructive

Controllability (precise, loose, no) [15]

- Fault location
- Fault timing
- Fault precision
 - Single bit
 - Few bits
 - Byte/word

Fault Types

Let B = {b₀, b₁, ..., b_{n-1}} be an arbitrary set of bits in memory [15].
Stuck-at faults

• Bits of B get fixed to a value $\{0,1\}$ and cannot be changed anymore

▶
$$b_i \rightsquigarrow b'_i$$
 $\forall i \in [0, n-1]$

Bit-flip faults

- E.g., all bits of *B* get flipped
- $\blacktriangleright b_i \rightsquigarrow b'_i = 1 b_i \qquad \forall i \in [0, n-1]$

Random faults

- Bits of B are randomly set
- ► $b_i \rightsquigarrow b'_i \in \{0,1\}$ $\forall i \in [0, n-1]$
- Set/reset faults
 - Bits of B are set to 1 or 0
 - ► $b_i \rightsquigarrow b'_i = c_i$ $c_i \in \{0, 1\}$ $\forall i \in [0, n-1]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Adversaries and Threats

Class I

- Clever outsider
- Class II
 - Knowledgeable insider
- Class III
 - Company/university

Adversaries Capability Range

8 / 31

Fault-Injection Methods

Non-invasive

- Package left untouched
- Modify working conditions
- Semi-invasive
 - De-capsulation, e.g., optical inductions
 - Allows direct contact to the chip die
- Invasive
 - Establish electrical contact to chip
 - Modification, destruction, ...

Non-Invasive Attack Setups - Spikes and Glitches

Michael Hutter

June 5, 2014

Spike/Glitch Attacks - Examples

- Under-voltage attacks (CHES 2008[7])
 - RFID antenna tearing cut-off power supply shortly
- Over-voltage spikes (ECCTD 2009[8])
 - Transistor can switch to higher voltages (> 5 Volts) for a short period of time
- Clock-glitch attacks
 - Mostly timing violations (setup/hold)
- Fault effects
 - Allow to change memory content
 - Change of program flow: skipping instructions, program-counter changes, tampering loop bounds, opcode changes, modifications of instruction and/or operand addresses, ...

Non-Invasive Attack Setups - EM Pulses

EM Attack - Example

- EM pulses induce Eddy currents that cause transistors to switch
- Fault attack on a CRT-RSA signature generation [18, 2]
 - Let n = pq. Instead of calculating $S = m^d \mod n$, you can split the computation into $S_1 = m^d \mod p$ and $S_2 = m^d \mod q$.
 - ► Use the Chinese Remainder Theorem (CRT) to combine them such that S = aS₁ + bS₂ mod n = CRT(S₁, S₂) mod n
 - A faulty computation, e.g., in S₁, leads to gcd(S − Š, n) = gcd(a(S₁ − Š₁), n) = q

Non-Invasive Attack Setups - Temperature

Michael Hutter

High-Temperature Fault Attacks - Example

- CARDIS 2013 [6] or [16]
- μ C placed on top of a heating plate
 - No response beyond 160 °C
 - Within 70 minutes, we got 100 faults (between 152 and 158 °C)
 - Attacking CRT-RSA: 31 revealed one of the prime modulus: 15 revealed p, 16 revealed q
- Exploiting data-remanence effects [5, 1]
 - Extensive heating accelerates aging (Negative Bias Temperature Instability)
 - Experiment: 100 °C for 36h at 5.5 V
 - SRAM cells got biased to either 1 or 0
 - ▶ 30% of memory change after heating
- Data-retention attacks by cooling [20]

Semi-Invasive Attack Setups

Michael Hutter

June 5, 2014

Semi-Invasive Attack - Example

- AES on an 8-bit microcontroller (FDTC 2009 [19])
- Modifying 256-bit S-box table stored in flash memory using a low-cost UV lamp
 - UV-light resistant marker protects remaining memory
- Byte fault allows recovering of entire key (using 2500 pairs of correct and faulty encryptions)

Invasive Attack Setups (1)

Invasive Attack Setups (2)

Picture courtesy of Dr. Jörn-Marc Schmidt

Exploitation of Faults

- Algorithm-specific attacks, e.g., in ECC
 - Manipulation of input parameters, e.g., base point [3]
 - Operations are done on a twist where ECDLP is easier to solve
 - Recover ephemeral key in ECDSA [14]
- Differential Fault Analysis (DFA)
 - Exploitation of differential information
 - Collection of correct and faulty outputs
 - Solve differential fault equations with cryptanalysis techniques
- Instruction-skipping attacks
 - E.g., skip square-and-multiply operations of RSA [17]
- Safe-error attacks
 - Exploit faults in key-dependent operations
 - Faults in computational part: C safe-errors
 - Faults in memory: M safe-errors

・ロン ・回 と ・ ヨン ・ ヨン

Hardware Countermeasures

- Sensors and filters
 - Detection of frequency changes
 - Power watchdogs, light detectors, temperature sensors, …
- Hardware redundancy
 - Parallel computation, check result at the end
 - Double memory, e.g., dual-rail logic
- Hiding and masking
 - Randomize the computation (dummy random cycles, asynchronous designs, unstable clocks, ...)
 - Obfuscation: bus scrambling, memory encryption, glue logic, ...
- Shielding
 - Active shielding (wire mesh on chip surface that detects interruptions)
 - Passive shielding (metal plate, additional metal layers, ...)
- Switch to newer CMOS process technology
 - ► Smaller transistors are usually harder to attack...

Software Countermeasures (1)

General countermeasures [10]

- Checking input/output parameters (e.g., ECC point-validity checks)
- Loop counters (use invariants, calc round signature)
- Cyclic redundancy checks (checksum is stored together with data)
- Hiding and masking (randomization limits precision)
- Time redundancy (calc twice and check, but: permanent faults?)
- Inverse computations (decrypt after encryption and check input)

Protocol-level countermeasures

- Fresh re-keying [13]
- "all-or-nothing" transforms [11]
- Message modifications [4]

イロト イヨト イヨト イヨト

<u>2</u>1 / 31

Software Countermeasures (2)

Information redundancy

- Add parities
 - E.g., with linear codes
 - Problems: not compatible with non-linear functions like AES S-box
- Ring embeddings [12]
 - Idea: perform operations on both data and check elements
 - E.g., embed AES field into a larger ring with data and check algebra
- Infective computations [21]
 - Idea: output only random data if there was a fault
 - E.g., add secret error and remove it again at the end (or apply bit scrambling [9])

・ロン ・回と ・ヨン・

Conclusions

- There is NO 100% protection!
 - Fault attacks are very powerful
 - If you have enough resources, there are almost no limits
- Countermeasures are needed to make attacks harder
 - Designer needs to know attack types and techniques
 - Attacks are always improving countermeasures too
- Future work
 - Passive and Active Combined Attacks (PACA)

・ロン ・聞と ・ほと ・ほと

References I

R. J. Anderson and M. G. Kuhn.

Low Cost Attacks on Tamper Resistant Devices.

In B. Christianson, B. Crispo, M. Lomas, and M. Roe, editors, *Security Protocols*, volume 1361 of *LNCS*, pages 125–136. Springer, 1997.

D. Boneh, R. A. DeMillo, and R. J. Lipton.

On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract).

In W. Fumy, editor, *EUROCRYPT '97, Konstanz, Germany, May 11-15*, volume 1233 of *LNCS*, pages 37–51. Springer, 1997.

M. Ciet and M. Joye.

Elliptic Curve Cryptosystems in the Presence of Permanent and Transient Faults.

Des. Codes Cryptography, 36(1):33-43, 2005.

Available online at http://eprint.iacr.org/2003/028.pdf.

References II

S. Guilley, L. Sauvage, J.-L. Danger, and N. Selmane.

Fault Injection Resilience.

In Fault Diagnosis and Tolerance in Cryptography – FDTC, Santa Barbara, California, USA, pages 51–65, 2010.

P. Gutmann.

Data Remanence in Semiconductor Devices.

In USENIX 2001, USA, Washington, D.C., August 13–17, 2001, Berkeley, CA, USA, 2001.

M. Hutter and J.-M. Schmidt.

The Temperature Side-Channel and Heating Fault Attacks.

In P. Rohatgi and A. Francillon, editors, *CARDIS 2013, Berlin, Germany, November 27-29.* Springer, 2013.

・ロン ・回 と ・ ヨ と ・ ヨ と

References III

M. Hutter, J.-M. Schmidt, and T. Plos.

RFID and its Vulnerability to Faults.

In E. Oswald and P. Rohatgi, editors, *CHES 2008, Washington DC, USA, August 10-13*, volume 5154 of *LNCS*, pages 363–379. Springer, August 2008.

M. Hutter, J.-M. Schmidt, and T. Plos.

Contact-Based Fault Injections and Power Analysis on RFID Tags. In *European Conference on Circuit Theory and Design 2009, ECCTD*, 2009.

M. Joye, P. Manet, and J.-B. Rigaud.

Strengthening Hardware AES Implementations against Fault Attacks. *IET Information Security*, 1(3):106–110, Sept. 2007.

M. Joye and M. Tunstall. *Fault Analysis in Cryptography*. Springer, 2012.

・ロン ・聞と ・ほと ・ほと

References IV

R. P. McEvoy, M. Tunstall, C. Whelan, C. C. Murphy, and W. P. Marnane.

All-or-Nothing Transforms as a Countermeasure to Differential Side-Channel Analysis.

Cryptology ePrint Archive, Report 2009/185, 2009.

M. Medwed and J.-M. Schmidt.

A Continuous Fault Countermeasure for AES Providing a Constant Error Detection Rate.

In L. Breveglieri, M. Joye, I. Koren, D. Naccache, and I. Verbauwhede, editors, *FDTC, Santa Barbara, California, 21 August*, volume 7, August 2010.

M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni.

Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices.

In D. J. Bernstein and T. Lange, editors, *AFRICACRYPT, Stellenbosch, South Africa, May 3-6*, volume 6055 of *LNCS*, pages 279–296. Springer, 2010.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二圖 - 釣A@

27 / 31

References V

D. Naccache, P. Q. Nguyen, M. Tunstall, and C. Whelan. Experimenting with Faults, Lattices and the DSA.

In S. Vaudenay, editor, *PKC 2005, Les Diablerets, Switzerland, January 23-26,* volume 3386 of *LNCS*, pages 16–28. Springer, January 2005.

M. Otto.

Fault Attacks and Countermeasures.

PhD thesis, Universität Paderborn, 2005.

J.-J. Quisquater and D. Samyde.

ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards.

In I. Attali and T. P. Jensen, editors, *Smart Card Programming and Security, E-smart 2001, Cannes, France, September 19-21*, volume 2140 of *LNCS*, pages 200–210. Springer, 2001.

References VI

J.-M. Schmidt and C. Herbst.

A Practical Attack on Square and Multiply.

In FDTC, pages 53-58, 2008.

J.-M. Schmidt and M. Hutter.

Optical and EM Fault-Attacks on CRT-based RSA: Concrete Results.

In K. C. Posch and J. Wolkerstorfer, editors, *Austrochip 2007, October 11, Graz, Austria*, pages 61–67. Verlag der Technischen Universität Graz, October 2007.

J.-M. Schmidt, M. Hutter, and T. Plos.

Optical Fault Attacks on AES: A Threat in Violet.

In D. Naccache and E. Oswald, editors, *FDTC 2009, Lausanne, Switzerland, September 6*, pages 13–22. IEEE-CS Press, September 2009.

・ロン ・回 と ・ ヨ と ・ ヨ と

References VII

S. P. Skorobogatov.

Data Remanence in Flash Memory Devices.

In J. R. Rao and B. Sunar, editors, *CHES 2005, Edinburgh, UK, August 29 - September 1*, volume 3659 of *LNCS*, pages 339–353. Springer, 2005.

S.-M. Yen, S.-J. Moon, and J. Ha.

Hardware Fault Attack on RSA with CRT Revisited.

In *ICISC 2002, Seoul, Korea, November 28-29*, volume 2587 of *LNCS*, pages 374–388. Springer, 2003.

والمراجع والمراجع ومعصف ومناجعا والمتعادين والمتنا والمتراجع والمراجع والمراجع والمراجع

Thanks for attention!

Questions?

Michael Hutter michael.hutter@iaik.tugraz.at Graz University of Technology

